1  Geographic data in Julia

using Pkg
Pkg.status()
Status `~/work/geocompjl/geocompjl/Project.toml`
  [c9ce4bd3] ArchGDAL v0.10.8
  [13f3f980] CairoMakie v0.13.2
  [a93c6f00] DataFrames v1.7.0
  [0703355e] DimensionalData v0.29.13
  [62cb38b5] GeoDataFrames v0.3.12
  [68eda718] GeoFormatTypes v0.4.4
  [cf35fbd7] GeoInterface v1.4.1
  [61d90e0f] GeoJSON v0.8.2
  [db073c08] GeoMakie v0.7.11
  [3251bfac] GeometryOps v0.1.15
  [a90b1aa1] LibGEOS v0.9.4
  [c94c279d] Proj v1.8.1
  [a3a2b9e3] Rasters v0.14.2
  [10745b16] Statistics v1.11.1
  [2913bbd2] StatsBase v0.34.4
"output"

1.1 Introduction

using GeoDataFrames
df = GeoDataFrames.read("data/world.gpkg")
Precompiling GeoDataFrames...
    460.6 ms  โœ“ IteratorInterfaceExtensions
    504.3 ms  โœ“ LaTeXStrings
    468.8 ms  โœ“ CEnum
    621.5 ms  โœ“ GeoFormatTypes
    713.5 ms  โœ“ TensorCore
    694.9 ms  โœ“ Statistics
    596.2 ms  โœ“ Observables
   1019.8 ms  โœ“ OrderedCollections
    787.6 ms  โœ“ Requires
    396.2 ms  โœ“ DataValueInterfaces
    643.1 ms  โœ“ Reexport
   1581.3 ms  โœ“ OffsetArrays
    683.1 ms  โœ“ Extents
    752.6 ms  โœ“ IntervalSets
    702.1 ms  โœ“ InvertedIndices
   1078.0 ms  โœ“ InlineStrings
    506.8 ms  โœ“ DataAPI
    723.4 ms  โœ“ LRUCache
    619.4 ms  โœ“ StaticArraysCore
    841.5 ms  โœ“ MappedArrays
    828.4 ms  โœ“ MPIPreferences
    851.7 ms  โœ“ OpenSSL_jll
   1762.5 ms  โœ“ boost_jll
   1091.7 ms  โœ“ Bzip2_jll
   1287.5 ms  โœ“ Qhull_jll
   1128.2 ms  โœ“ Lz4_jll
   2390.7 ms  โœ“ SentinelArrays
    833.7 ms  โœ“ Xorg_libXau_jll
    929.5 ms  โœ“ ICU_jll
    924.0 ms  โœ“ libaec_jll
    787.8 ms  โœ“ Hwloc_jll
   1066.1 ms  โœ“ libpng_jll
    844.9 ms  โœ“ Giflib_jll
    828.1 ms  โœ“ LERC_jll
    869.4 ms  โœ“ SQLite_jll
    875.5 ms  โœ“ EarCut_jll
    949.6 ms  โœ“ JpegTurbo_jll
    839.8 ms  โœ“ snappy_jll
    999.3 ms  โœ“ XZ_jll
    959.9 ms  โœ“ Xorg_libXdmcp_jll
    919.5 ms  โœ“ brotli_jll
    850.8 ms  โœ“ Zstd_jll
    837.8 ms  โœ“ Expat_jll
    863.2 ms  โœ“ MicrosoftMPI_jll
    825.3 ms  โœ“ Xorg_xtrans_jll
    783.0 ms  โœ“ Libgpg_error_jll
    905.2 ms  โœ“ GEOS_jll
    871.6 ms  โœ“ Kerberos_krb5_jll
    774.1 ms  โœ“ Xorg_libpthread_stubs_jll
    473.4 ms  โœ“ TableTraits
   1270.1 ms  โœ“ XML2_jll
    873.1 ms  โœ“ StackViews
   2514.2 ms  โœ“ RecipesBase
    851.9 ms  โœ“ PaddedViews
    981.8 ms  โœ“ IntervalSets โ†’ IntervalSetsRandomExt
    566.1 ms  โœ“ IntervalSets โ†’ IntervalSetsStatisticsExt
   3851.7 ms  โœ“ StringManipulation
   3211.9 ms  โœ“ DataStructures
    917.1 ms  โœ“ PooledArrays
   1005.3 ms  โœ“ Missings
   4528.8 ms  โœ“ FixedPointNumbers
   1922.6 ms  โœ“ GeoInterface
   1891.8 ms  โœ“ DiskArrays
   1016.5 ms  โœ“ Thrift_jll
   1998.1 ms  โœ“ MPItrampoline_jll
   1158.4 ms  โœ“ HDF4_jll
   1895.8 ms  โœ“ OpenMPI_jll
   1096.2 ms  โœ“ Blosc_jll
   2015.0 ms  โœ“ MPICH_jll
   1052.0 ms  โœ“ libzip_jll
   1126.7 ms  โœ“ Libtiff_jll
    763.2 ms  โœ“ Libgcrypt_jll
   1074.1 ms  โœ“ LibPQ_jll
    735.7 ms  โœ“ IntervalSets โ†’ IntervalSetsRecipesBaseExt
    738.2 ms  โœ“ MosaicViews
   1271.3 ms  โœ“ Tables
    987.7 ms  โœ“ SortingAlgorithms
    880.4 ms  โœ“ GeoInterfaceRecipes
   1020.6 ms  โœ“ Arrow_jll
   1091.5 ms  โœ“ LittleCMS_jll
   1563.6 ms  โœ“ PROJ_jll
   1122.8 ms  โœ“ XSLT_jll
   2836.8 ms  โœ“ HDF5_jll
   4104.6 ms  โœ“ ColorTypes
   1048.1 ms  โœ“ OpenJpeg_jll
   1349.4 ms  โœ“ libgeotiff_jll
   2542.9 ms  โœ“ Xorg_libxcb_jll
   2521.4 ms  โœ“ NetCDF_jll
  13033.4 ms  โœ“ StaticArrays
   1091.6 ms  โœ“ Xorg_libX11_jll
   1226.4 ms  โœ“ StaticArrays โ†’ StaticArraysStatisticsExt
   4197.0 ms  โœ“ ColorVectorSpace
    788.1 ms  โœ“ Xorg_libXext_jll
    959.3 ms  โœ“ Libglvnd_jll
   1098.4 ms  โœ“ libwebp_jll
   7416.5 ms  โœ“ Colors
   2997.4 ms  โœ“ GDAL_jll
   5162.3 ms  โœ“ GDAL
  18889.2 ms  โœ“ GeometryBasics
   6751.5 ms  โœ“ MakieCore
  32358.0 ms  โœ“ PrettyTables
   1823.1 ms  โœ“ GeoInterfaceMakie
  27098.4 ms  โœ“ ImageCore
  11467.1 ms  โœ“ ArchGDAL
  43532.3 ms  โœ“ DataFrames
   2693.0 ms  โœ“ GeoDataFrames
  106 dependencies successfully precompiled in 99 seconds. 37 already precompiled.
177ร—11 DataFrame
152 rows omitted
Row geom iso_a2 name_long continent region_un subregion type area_km2 pop lifeExp gdpPercap
IGeometrโ€ฆ String? String String String String String Float64 Float64? Float64? Float64?
1 Geometry: wkbMultiPolygon FJ Fiji Oceania Oceania Melanesia Sovereign country 19290.0 885806.0 69.96 8222.25
2 Geometry: wkbMultiPolygon TZ Tanzania Africa Africa Eastern Africa Sovereign country 9.32746e5 5.22349e7 64.163 2402.1
3 Geometry: wkbMultiPolygon EH Western Sahara Africa Africa Northern Africa Indeterminate 96270.6 missing missing missing
4 Geometry: wkbMultiPolygon CA Canada North America Americas Northern America Sovereign country 1.0036e7 3.55353e7 81.953 43079.1
5 Geometry: wkbMultiPolygon US United States North America Americas Northern America Country 9.51074e6 3.18623e8 78.8415 51922.0
6 Geometry: wkbMultiPolygon KZ Kazakhstan Asia Asia Central Asia Sovereign country 2.72981e6 1.72883e7 71.62 23587.3
7 Geometry: wkbMultiPolygon UZ Uzbekistan Asia Asia Central Asia Sovereign country 4.6141e5 3.07577e7 71.039 5370.87
8 Geometry: wkbMultiPolygon PG Papua New Guinea Oceania Oceania Melanesia Sovereign country 4.6452e5 7.75578e6 65.23 3709.08
9 Geometry: wkbMultiPolygon ID Indonesia Asia Asia South-Eastern Asia Sovereign country 1.81925e6 2.55131e8 68.856 10003.1
10 Geometry: wkbMultiPolygon AR Argentina South America Americas South America Sovereign country 2.78447e6 4.29815e7 76.252 18797.5
11 Geometry: wkbMultiPolygon CL Chile South America Americas South America Sovereign country 8.14844e5 1.76138e7 79.117 22195.3
12 Geometry: wkbMultiPolygon CD Democratic Republic of the Congo Africa Africa Middle Africa Sovereign country 2.32349e6 7.37229e7 58.782 785.347
13 Geometry: wkbMultiPolygon SO Somalia Africa Africa Eastern Africa Sovereign country 4.84333e5 1.35131e7 55.467 missing
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ
166 Geometry: wkbMultiPolygon ET Ethiopia Africa Africa Eastern Africa Sovereign country 1.13239e6 9.73668e7 64.535 1424.53
167 Geometry: wkbMultiPolygon DJ Djibouti Africa Africa Eastern Africa Sovereign country 21880.3 912164.0 62.006 missing
168 Geometry: wkbMultiPolygon missing Somaliland Africa Africa Eastern Africa Indeterminate 1.6735e5 missing missing missing
169 Geometry: wkbMultiPolygon UG Uganda Africa Africa Eastern Africa Sovereign country 2.45768e5 3.88333e7 59.224 1637.28
170 Geometry: wkbMultiPolygon RW Rwanda Africa Africa Eastern Africa Sovereign country 23365.4 1.13454e7 66.188 1629.87
171 Geometry: wkbMultiPolygon BA Bosnia and Herzegovina Europe Europe Southern Europe Sovereign country 50605.1 3.566e6 76.561 10516.8
172 Geometry: wkbMultiPolygon MK Macedonia Europe Europe Southern Europe Sovereign country 25062.3 2.0775e6 75.384 12298.5
173 Geometry: wkbMultiPolygon RS Serbia Europe Europe Southern Europe Sovereign country 76388.6 7.13058e6 75.3366 13112.9
174 Geometry: wkbMultiPolygon ME Montenegro Europe Europe Southern Europe Sovereign country 13443.7 621810.0 76.712 14796.6
175 Geometry: wkbMultiPolygon XK Kosovo Europe Europe Southern Europe Sovereign country 11230.3 1.8218e6 71.0976 8698.29
176 Geometry: wkbMultiPolygon TT Trinidad and Tobago North America Americas Caribbean Sovereign country 7737.81 1.35449e6 70.426 31181.8
177 Geometry: wkbMultiPolygon SS South Sudan Africa Africa Eastern Africa Sovereign country 6.24909e5 1.1531e7 55.817 1935.88
using CairoMakie
using GeoMakie

f, a, p = poly(df.geom)
Precompiling CairoMakie...
    514.3 ms  โœ“ RangeArrays
    598.8 ms  โœ“ PolygonOps
    608.5 ms  โœ“ IndirectArrays
    607.7 ms  โœ“ StatsAPI
    728.7 ms  โœ“ AbstractFFTs
    552.7 ms  โœ“ Contour
    582.2 ms  โœ“ TriplotBase
    776.5 ms  โœ“ InverseFunctions
    594.3 ms  โœ“ EnumX
   1530.4 ms  โœ“ FillArrays
   1267.2 ms  โœ“ Grisu
   2002.1 ms  โœ“ Format
    719.7 ms  โœ“ StableRNGs
   1100.5 ms  โœ“ AbstractTrees
    855.3 ms  โœ“ RoundingEmulator
    785.8 ms  โœ“ PtrArrays
    913.8 ms  โœ“ TranscodingStreams
   1890.4 ms  โœ“ IrrationalConstants
    922.8 ms  โœ“ NaNMath
    637.7 ms  โœ“ LazyModules
    732.3 ms  โœ“ Ratios
    764.2 ms  โœ“ Inflate
    757.0 ms  โœ“ ConstructionBase
   4568.8 ms  โœ“ MacroTools
    733.9 ms  โœ“ Adapt
   2656.5 ms  โœ“ AdaptivePredicates
   1077.5 ms  โœ“ Statistics โ†’ SparseArraysExt
    912.7 ms  โœ“ SuiteSparse
    909.1 ms  โœ“ WoodburyMatrices
   1231.4 ms  โœ“ ProgressMeter
    991.5 ms  โœ“ DocStringExtensions
   1022.6 ms  โœ“ Animations
    688.8 ms  โœ“ SignedDistanceFields
   1092.1 ms  โœ“ Graphite2_jll
   2013.6 ms  โœ“ ChainRulesCore
    920.4 ms  โœ“ Libmount_jll
   2303.5 ms  โœ“ UnicodeFun
   1037.4 ms  โœ“ LLVMOpenMP_jll
    951.5 ms  โœ“ Rmath_jll
    862.2 ms  โœ“ libfdk_aac_jll
    766.2 ms  โœ“ Imath_jll
    892.7 ms  โœ“ CRlibm_jll
    787.7 ms  โœ“ Ogg_jll
   1084.5 ms  โœ“ LAME_jll
   1092.9 ms  โœ“ oneTBB_jll
    790.5 ms  โœ“ x264_jll
    943.1 ms  โœ“ x265_jll
    909.0 ms  โœ“ libaom_jll
    871.9 ms  โœ“ LZO_jll
    847.2 ms  โœ“ Opus_jll
    943.0 ms  โœ“ Libffi_jll
   1042.8 ms  โœ“ isoband_jll
    803.6 ms  โœ“ FFTW_jll
    748.9 ms  โœ“ Libuuid_jll
   1194.5 ms  โœ“ OpenSpecFun_jll
    811.6 ms  โœ“ libsixel_jll
    864.1 ms  โœ“ FriBidi_jll
    808.4 ms  โœ“ OpenBLASConsistentFPCSR_jll
   1925.6 ms  โœ“ FilePathsBase
   2056.7 ms  โœ“ PkgVersion
    986.9 ms  โœ“ FreeType2_jll
   2549.9 ms  โœ“ JSON
   6571.9 ms  โœ“ ColorSchemes
   1725.3 ms  โœ“ QuadGK
   7784.5 ms  โœ“ FileIO
   4376.8 ms  โœ“ ImageBase
   2246.3 ms  โœ“ IntelOpenMP_jll
   2038.0 ms  โœ“ Packing
   2484.5 ms  โœ“ ShaderAbstractions
   1172.5 ms  โœ“ Gettext_jll
   1299.8 ms  โœ“ Xorg_libXrender_jll
   1555.8 ms  โœ“ AxisArrays
  16597.9 ms  โœ“ SIMD
    775.5 ms  โœ“ InverseFunctions โ†’ InverseFunctionsTestExt
   2787.9 ms  โœ“ AbstractFFTs โ†’ AbstractFFTsTestExt
    748.7 ms  โœ“ InverseFunctions โ†’ InverseFunctionsDatesExt
    773.4 ms  โœ“ FillArrays โ†’ FillArraysStatisticsExt
   1287.3 ms  โœ“ FillArrays โ†’ FillArraysSparseArraysExt
   1059.1 ms  โœ“ Showoff
    797.5 ms  โœ“ AliasTables
   1088.0 ms  โœ“ Graphics
    977.7 ms  โœ“ Ratios โ†’ RatiosFixedPointNumbersExt
    988.9 ms  โœ“ ConstructionBase โ†’ ConstructionBaseIntervalSetsExt
   1000.4 ms  โœ“ ConstructionBase โ†’ ConstructionBaseLinearAlgebraExt
   1683.5 ms  โœ“ ConstructionBase โ†’ ConstructionBaseStaticArraysExt
   1949.4 ms  โœ“ SimpleTraits
   9808.8 ms  โœ“ PNGFiles
   1211.4 ms  โœ“ Adapt โ†’ AdaptStaticArraysExt
    856.6 ms  โœ“ OffsetArrays โ†’ OffsetArraysAdaptExt
  15439.0 ms  โœ“ GridLayoutBase
   1141.8 ms  โœ“ Adapt โ†’ AdaptSparseArraysExt
   1190.4 ms  โœ“ AxisAlgorithms
   1391.7 ms  โœ“ PDMats
   1205.2 ms  โœ“ LogExpFunctions
   1180.7 ms  โœ“ ChainRulesCore โ†’ ChainRulesCoreSparseArraysExt
    972.4 ms  โœ“ AbstractFFTs โ†’ AbstractFFTsChainRulesCoreExt
   1308.0 ms  โœ“ StaticArrays โ†’ StaticArraysChainRulesCoreExt
   1285.6 ms  โœ“ Pixman_jll
   1780.7 ms  โœ“ Rmath
   1374.5 ms  โœ“ OpenEXR_jll
   1053.8 ms  โœ“ Isoband
   1523.4 ms  โœ“ libvorbis_jll
    984.8 ms  โœ“ FilePathsBase โ†’ FilePathsBaseMmapExt
   1564.8 ms  โœ“ FilePaths
   2544.0 ms  โœ“ FilePathsBase โ†’ FilePathsBaseTestExt
   2246.1 ms  โœ“ FreeType
   1471.5 ms  โœ“ Fontconfig_jll
   1573.6 ms  โœ“ ColorBrewer
  41931.2 ms  โœ“ Unitful
   6765.1 ms  โœ“ IntervalArithmetic
   2533.6 ms  โœ“ QOI
   4719.9 ms  โœ“ Sixel
   5805.5 ms  โœ“ JpegTurbo
   1195.4 ms  โœ“ Glib_jll
   4137.8 ms  โœ“ WebP
   1244.9 ms  โœ“ StructArrays
   6408.7 ms  โœ“ MKL_jll
   3488.4 ms  โœ“ ImageAxes
    886.2 ms  โœ“ FillArrays โ†’ FillArraysPDMatsExt
    722.8 ms  โœ“ LogExpFunctions โ†’ LogExpFunctionsInverseFunctionsExt
   2326.0 ms  โœ“ LogExpFunctions โ†’ LogExpFunctionsChainRulesCoreExt
   5463.5 ms  โœ“ SpecialFunctions
   4836.4 ms  โœ“ StatsBase
  21684.5 ms  โœ“ PlotUtils
   2264.3 ms  โœ“ OpenEXR
   4098.9 ms  โœ“ Interpolations
   1331.7 ms  โœ“ Unitful โ†’ ConstructionBaseUnitfulExt
   1232.2 ms  โœ“ Unitful โ†’ InverseFunctionsUnitfulExt
   1076.9 ms  โœ“ IntervalArithmetic โ†’ IntervalArithmeticIntervalSetsExt
   1596.1 ms  โœ“ Cairo_jll
   4536.9 ms  โœ“ FreeTypeAbstraction
    819.0 ms  โœ“ StructArrays โ†’ StructArraysAdaptExt
   1375.4 ms  โœ“ StructArrays โ†’ StructArraysSparseArraysExt
   1525.0 ms  โœ“ StructArrays โ†’ StructArraysStaticArraysExt
    935.1 ms  โœ“ StructArrays โ†’ StructArraysLinearAlgebraExt
   2348.5 ms  โœ“ ImageMetadata
  10217.6 ms  โœ“ ExactPredicates
  27835.8 ms  โœ“ Automa
   3458.2 ms  โœ“ SpecialFunctions โ†’ SpecialFunctionsChainRulesCoreExt
   1183.7 ms  โœ“ ColorVectorSpace โ†’ SpecialFunctionsExt
   1748.3 ms  โœ“ HypergeometricFunctions
   1171.2 ms  โœ“ HarfBuzz_jll
   2079.1 ms  โœ“ Interpolations โ†’ InterpolationsUnitfulExt
   3090.3 ms  โœ“ Netpbm
   3624.9 ms  โœ“ StatsFuns
   1342.7 ms  โœ“ libass_jll
   1335.8 ms  โœ“ Pango_jll
   1230.2 ms  โœ“ StatsFuns โ†’ StatsFunsInverseFunctionsExt
  10670.0 ms  โœ“ DelaunayTriangulation
   3002.4 ms  โœ“ StatsFuns โ†’ StatsFunsChainRulesCoreExt
  21483.1 ms  โœ“ FFTW
  13876.0 ms  โœ“ MathTeXEngine
   1787.3 ms  โœ“ FFMPEG_jll
   1473.2 ms  โœ“ Cairo
   6984.7 ms  โœ“ Distributions
    916.4 ms  โœ“ Distributions โ†’ DistributionsChainRulesCoreExt
   1504.7 ms  โœ“ Distributions โ†’ DistributionsTestExt
   1350.1 ms  โœ“ KernelDensity
  86039.9 ms  โœ“ TiffImages
    994.1 ms  โœ“ ImageIO
 135154.4 ms  โœ“ Makie
  42593.9 ms  โœ“ CairoMakie
  162 dependencies successfully precompiled in 317 seconds. 110 already precompiled.
  1 dependency had output during precompilation:
โ”Œ MKL_jll
โ”‚   Downloading artifact: IntelOpenMP
โ””  
Precompiling ParsersExt...
    415.7 ms  โœ“ InlineStrings โ†’ ParsersExt
  1 dependency successfully precompiled in 0 seconds. 9 already precompiled.
Precompiling SerializationExt...
    366.9 ms  โœ“ LRUCache โ†’ SerializationExt
  1 dependency successfully precompiled in 0 seconds. 2 already precompiled.
Precompiling IntervalArithmeticRecipesBaseExt...
    689.1 ms  โœ“ IntervalArithmetic โ†’ IntervalArithmeticRecipesBaseExt
  1 dependency successfully precompiled in 1 seconds. 33 already precompiled.
Precompiling ArchGDALMakieExt...
   2210.4 ms  โœ“ ArchGDAL โ†’ ArchGDALMakieExt
  1 dependency successfully precompiled in 3 seconds. 306 already precompiled.
Precompiling GeoMakie...
    550.6 ms  โœ“ SortTileRecursiveTree
    975.3 ms  โœ“ GeometryOpsCore
   1027.4 ms  โœ“ CoordinateTransformations
   2508.6 ms  โœ“ Geodesy
   2549.6 ms  โœ“ Proj
   4202.0 ms  โœ“ GeometryOps
   1198.1 ms  โœ“ GeometryOps โ†’ GeometryOpsProjExt
  25797.9 ms  โœ“ GeoJSON
   1093.7 ms  โœ“ NaturalEarth
   1359.7 ms  โœ“ GeoJSON โ†’ GeoJSONMakieExt
   9156.5 ms  โœ“ GeoMakie
  11 dependencies successfully precompiled in 37 seconds. 276 already precompiled.

1.1.1 Raster from scratch

In this section, we are going to demonstrate the creation of rasters from scratch. We will construct two small rasters, elev and grain, which we will use in examples later in the book. Unlike creating a vector layer (see ?sec-vector-layer-from-scratch), creating a raster from scratch is rarely needed in practice because aligning a raster with the proper spatial extent is challenging to do programmatically (โ€œgeoreferencingโ€ tools in GIS software are a better fit for the job). Nevertheless, the examples will be helpful to become more familiar with the Rasters.jl data structures.

using Rasters
import GeoFormatTypes as GFT
Precompiling Rasters...
    658.2 ms  โœ“ Interfaces
    673.9 ms  โœ“ FieldMetadata
    866.3 ms  โœ“ ArrayInterface
   1203.4 ms  โœ“ CFTime
    834.6 ms  โœ“ Flatten
    704.8 ms  โœ“ ArrayInterface โ†’ ArrayInterfaceStaticArraysCoreExt
    845.9 ms  โœ“ ArrayInterface โ†’ ArrayInterfaceSparseArraysExt
   1734.5 ms  โœ“ Setfield
   1346.0 ms  โœ“ CommonDataModel
  14873.5 ms  โœ“ DimensionalData
    781.0 ms  โœ“ DimensionalData โ†’ DimensionalDataDiskArraysExt
   5517.0 ms  โœ“ Rasters
  12 dependencies successfully precompiled in 23 seconds. 58 already precompiled.
Precompiling ArrayInterfaceChainRulesCoreExt...
    368.5 ms  โœ“ ArrayInterface โ†’ ArrayInterfaceChainRulesCoreExt
  1 dependency successfully precompiled in 0 seconds. 11 already precompiled.
Precompiling DimensionalDataMakie...
    806.2 ms  โœ“ DimensionalData โ†’ DimensionalDataStatsBase
   6820.6 ms  โœ“ DimensionalData โ†’ DimensionalDataMakie
  2 dependencies successfully precompiled in 7 seconds. 277 already precompiled.
Precompiling RastersMakieExt...
   1327.4 ms  โœ“ Rasters โ†’ RastersStatsBaseExt
   6640.2 ms  โœ“ Rasters โ†’ RastersMakieExt
  2 dependencies successfully precompiled in 8 seconds. 291 already precompiled.
Precompiling RastersProjExt...
   1270.3 ms  โœ“ Rasters โ†’ RastersCoordinateTransformationsExt
   1392.3 ms  โœ“ Rasters โ†’ RastersProjExt
  2 dependencies successfully precompiled in 1 seconds. 92 already precompiled.
Precompiling RastersArchGDALExt...
   2373.3 ms  โœ“ Rasters โ†’ RastersArchGDALExt
  1 dependency successfully precompiled in 3 seconds. 165 already precompiled.

Conceptually, a raster is an array combined with georeferencing information, whereas the latter comprises:

  • Lookup vectors for the axes, encoding the spatial coordinates for each grid cell. These take the form of the X and Y dimensions in the raster that youโ€™ll see below.
  • A coordinate reference system (CRS) definition, specifying the association of the rasterโ€™s coordinates with the surface of the earth.

Therefore, to create a raster, we first need to have an array with the values, and then supplement it with the georeferencing information. Letโ€™s create the arrays elev and grain. The elev array is a \(6 \times 6\) array with sequential values from 1 to 36. It can be created as follows using base Julia functions.

elev = reshape(UInt8(1):UInt8(36), (6, 6))
6ร—6 reshape(::UnitRange{UInt8}, 6, 6) with eltype UInt8:
 0x01  0x07  0x0d  0x13  0x19  0x1f
 0x02  0x08  0x0e  0x14  0x1a  0x20
 0x03  0x09  0x0f  0x15  0x1b  0x21
 0x04  0x0a  0x10  0x16  0x1c  0x22
 0x05  0x0b  0x11  0x17  0x1d  0x23
 0x06  0x0c  0x12  0x18  0x1e  0x24

The grain array represents a categorical raster with values 0, 1, 2, corresponding to categories โ€œclayโ€, โ€œsiltโ€, โ€œsandโ€, respectively. We will create it from a specific arrangement of pixel values, using reshape.

v = UInt8[
  1, 0, 1, 2, 2, 2, 
  0, 2, 0, 0, 2, 1, 
  0, 2, 2, 0, 0, 2, 
  0, 0, 1, 1, 1, 1, 
  1, 1, 1, 2, 1, 1, 
  2, 1, 2, 2, 0, 2
]
grain = reshape(v, (6, 6))
6ร—6 Matrix{UInt8}:
 0x01  0x00  0x00  0x00  0x01  0x02
 0x00  0x02  0x02  0x00  0x01  0x01
 0x01  0x00  0x02  0x01  0x01  0x02
 0x02  0x00  0x00  0x01  0x02  0x02
 0x02  0x02  0x00  0x01  0x01  0x00
 0x02  0x01  0x02  0x01  0x01  0x02

Note that in both cases, we are using the uint8 (unsigned integer in 8 bits, i.e., 0-255) data type, which is sufficient to represent all possible values of the given rasters (see ?tbl-numpy-data-types). This is the recommended approach for a minimal memory footprint.

What is missing now is the georeferencing information (see ?sec-using-rasters-jl). In this case, since the rasters are arbitrary, we also set up arbitrary dimension lookups for the x and y axes, where:

  • The origin (\(x_{min}\), \(y_{max}\)) is at -1.5,1.5
  • The raster resolution (\(delta_{x}\), \(delta_{y}\)) is 0.5,-0.5

We can add this information using rasterio.transform.from_origin, and specifying west, north, xsize, and ysize parameters. The resulting transformation matrix object is hereby named new_transform.

new_x = X(range(-1.5, step=0.5, length=6))
new_y = Y(range(1.0, step=-0.5, length=6))
Y 1.0:-0.5:-1.5

We can now construct a Raster object, from the elev array and the dimensions new_x and new_y.
We assign to it a CRS of EPSG:4326 (which encodes that the coordinate system is longitude/latitude on the โ€œstandardโ€ WGS84 definition of the Earthโ€™s curvature).

Here, we use the GFT.EPSG(code) constructor to create an object that encodes a reference code under the European Petroleum Survey Group (EPSG) authorityโ€™s database of coordinate reference systems.

elev_raster = Raster(elev, (new_x, new_y); crs = GFT.EPSG(4326))
โ”Œ 6ร—6 Raster{UInt8, 2} โ”
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ dims โ”
  โ†“ X Projected{Float64} -1.5:0.5:1.0 ForwardOrdered Regular Points,
  โ†’ Y Projected{Float64} 1.0:-0.5:-1.5 ReverseOrdered Regular Points
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ raster โ”ค
  extent: Extent(X = (-1.5, 1.0), Y = (-1.5, 1.0))
  crs: EPSG:4326
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
  โ†“ โ†’     1.0     0.5     0.0    -0.5    -1.0    -1.5
 -1.5  0x01    0x07    0x0d    0x13    0x19    0x1f
 -1.0  0x02    0x08    0x0e    0x14    0x1a    0x20
 -0.5  0x03    0x09    0x0f    0x15    0x1b    0x21
  0.0  0x04    0x0a    0x10    0x16    0x1c    0x22
  0.5  0x05    0x0b    0x11    0x17    0x1d    0x23
  1.0  0x06    0x0c    0x12    0x18    0x1e    0x24

The raster can now be plotted in its coordinate system, passing the array elev along with the transformation matrix new_transform to rasterio.plot.show (Figure 1.1).

plot(elev_raster)
Figure 1.1: Plot of the elev raster, a minimal example of a continuous raster, created from scratch

The grain raster can be plotted the same way, as we are going to use the same transformation matrix for it as well (Figure 1.2).

plot(Raster(grain, (new_x, new_y); crs = GFT.EPSG(4326)))
Figure 1.2: Plot of the grain raster, a minimal example of a categorical raster, created from scratch

At this point, we have two rasters, each composed of an array and related dimension lookups. We can work with the raster using Rasters.jl by:

  • Keeping in mind that any other layer we use in the analysis is in the same CRS

Finally, to export the raster for permanent storage, along with the spatial metadata, we need to go through the following steps:

  1. Create a raster file (where we set the lookups and the CRS, among other settings)
  2. Write the array with raster values into the connection
  3. Close the connection

Donโ€™t worry if the code below is unclear; the concepts related to writing raster data to file will be explained in ?sec-data-output-raster. For now, for completeness, and also to use these rasters in subsequent chapters without having to re-create them from scratch, we just provide the code for exporting the elev and grain rasters into the output directory. In the case of elev, we do it as follows with the Rasters.write functions and methods of the Rasters.jl package.

write("output/elev.tif", elev_raster; force = true)
"output/elev.tif"

Note that the CRS we (arbitrarily) set for the elev raster is WGS84, defined using crs=4326 according to the EPSG code.

Exporting the grain raster is done in the same way, with the only differences being the file name and the array we write into the connection.

write("output/grain.tif", Raster(grain, (new_x, new_y); crs = GFT.EPSG(4326)); force = true)
"output/grain.tif"

As a result, the files elev.tif and grain.tif are written into the output directory. We are going to use these small raster files later on in the examples (for example, ?sec-raster-subsetting).

Note that the transform matrices and dimensions of elev and grain are identical. This means that the rasters are overlapping, and can be combined into one two-band raster, processed in raster algebra operations (?sec-map-algebra), etc.